欢迎来到BB娱乐平台登录艾弗森·[China]贝博艾弗森体育网页版!   全国服务热线:

0533-2122557

首页 > 产品中心 > 丙烯酰胺

丙烯酰胺 聚丙烯酰胺 BB娱乐平台登录艾弗森

BB娱乐平台登录艾弗森《食品科学》:江南大学王利强教授等:多糖基气凝胶食

发布时间:2024-04-19 01:25:05 来源:BB贝博 作者:贝博艾弗森体育网页版访问次数:

 

  气凝胶作为新兴材料,具有低密度、高比表面积、低导热率等特点,已成为一种具有应用潜力的包装 材料。研究人员根据前体材料的不同,已制备出无机、有机、复合等多种类型的气凝胶,可用于缓释、吸附、油水分离、保温隔热、包装等领域。多 糖是由糖苷键组成的生物质材料,通常是植物(如纤维素)和动物外骨骼(如几丁质)的主要组成成分之一,或在植物能量储存(如淀粉)中起重要作用。多糖相比于传统的无机材料和聚合物来说,具有来源广、无污染、可生物降解、有一定营养价值、成本低等优点。多糖基气凝胶由于其高孔隙率、低密度、高比表面积和可生物降解性等卓越的特性,在食品包装领域表现出巨大的潜力,可作为吸湿剂、载体材料、防腐剂等。

  江南大学机械工程学院的王谡阳、王飞杰、王利强*等人 在介绍多糖基气凝胶的制备和性能的基础上,重点对不同类型的多糖基气凝胶的应用研究进行总结,以期促进多糖基气凝胶材料在食品包装行业中的发展。

  气凝胶是通过去除凝胶中的液体部分来制备的,保留凝胶中的溶质以使其形成三维网络结构固体材料。如图1所示,多糖基气凝胶的制备主要分为多糖的溶解、凝胶的制备、溶剂交换和凝胶干燥4个阶段。

  使用合适的溶剂将多糖溶解并使其均匀分散是制备多糖基气凝胶的第一步。水是最常用的溶剂,但对于一些难溶于水的多糖(如纤维素、壳聚糖等),可采用有机溶剂或离子液体进行溶解。N-甲基吗啉-N-氧化物可用于溶解纤维素以制备气凝胶。李瑞雪等将纳米纤维素晶体(CNC)和壳聚糖溶解在-12 ℃的NaOH/尿素/水混合溶液(体积比为7∶12∶81)中,并使用甲基三甲氧基硅烷进行疏水改性,获得了超疏水复合气凝胶。

  多糖在溶剂中溶解后,通过化学键或离子相互作用形成了三维网络结构,从而形成呈液态的凝胶。根据交联的性质,凝胶可分为物理凝胶和化学凝胶。在物理凝胶中,离子相互作用、氢键等相对较弱的作用力使多糖间形成可逆的交联。纳米纤维素纤维(CNF)作为骨架材料通过氢键与MnO 2 交联形成复合气凝胶,从而实现高稳定性的臭氧转化。在化学凝胶中,通过添加交联剂使多糖间形成较强的共价键,以达到交联的目的。使用离子液体1-丁基-3-甲基咪唑氯化物作为溶剂制备壳聚糖气凝胶,羟基由环氧氯丙烷(ECH)共价交联,使气凝胶具有优良的溶胀性能。

  在冷冻干燥前的预冷过程中,冰晶的生长速度不同可能会导致气凝胶出现孔隙不均匀的现象;在冷冻干燥时,水的升华可能导致前体材料的聚集、结构坍塌、比表面积减小。此外,对于超临界二氧化碳(scCO 2 )干燥,由于水对scCO 2 的亲和力较低,丙酮或乙醇对scCO 2 的溶解度较高而被用作水的代替品(通过溶剂交换)。溶剂交换是使用对溶质溶解度更高、与原溶剂互溶的另一种溶剂,将溶质从原溶剂中析出并溶解的方法,可通过一步或多步法进行。一步法是指将凝胶直接浸泡在目标溶剂中,如Takeshita等使用对壳聚糖更具亲和力的有机溶剂(甲醇、乙醇、异丙醇、正庚烷)对壳聚糖水凝胶进行溶剂交换。多步法是指将凝胶依次浸泡于浓度阶梯式增加的目标溶剂-水混合物中,有研究者将海藻酸钠水凝胶微球连续浸入一系列乙醇-水溶液(体积分数分别为10%、30%、50%、70%、90%和100%)中,进而得到海藻酸钠醇凝胶。有研究评估scCO 2 干燥和冷冻干燥对所得CNF气凝胶形貌、性能(密度、孔隙率、比表面积、孔径和孔体积)、结晶度和热稳定性的影响,发现scCO 2 干燥更有利于气凝胶的形成,与冷冻干燥相比,可以生产密度较低和表面积较高的气凝胶。由此可见,水和有机溶剂都可以作为凝胶液相,溶剂交换不是制备气凝胶必须的一个过程,但对提升气凝胶性能有着积极作用。

  凝胶的干燥是制备气凝胶最后也是最重要的一个阶段。干燥方式对气凝胶的三维网络结构、机械性能以及功能特性有着关键影响。因此,选择正确的干燥方式至关重要。常用的干燥方式有冷冻干燥、超临界干燥、常压干燥3种。

  冷冻干燥是最常用的气凝胶干燥方式,主要分为两步:第一步是将凝胶材料预冷冻至固态,第二步是在真空条件下将冻结的溶液升华,冷空气对流使气凝胶基质内部形成孔隙。有研究者采用冷冻干燥方式制备淀粉基气凝胶,发现冰晶生长速度不同导致气凝胶空隙不均匀,比表面积较小,机械性能较差。冷冻干燥的过程简单,但耗时较长、能源消耗较大,并且易发生结块现象。

  超临界干燥是一种主要用于干燥醇凝胶的技术,在所有超临界流体中,scCO 2 得益于其无毒、易得、成本低、易达到临界点、惰性等特点,最常用于超临界干燥。在scCO 2 干燥过程中,CO 2 在溶剂中高度溶解而使液体膨胀,并且由于液体体积膨胀,CO 2 含量增加直至达到临界状态,最终取代了溶剂。

  常压干燥是指在环境温度压力或烘箱中,将水凝胶或醇凝胶自然干燥至恒定质量的一种干燥方式。为避免干燥过程中凝胶体积发生收缩,使用有机催化剂三乙胺代替常用的催化剂Na 2 CO 3 ,通过常压干燥合成的活性炭气凝胶表现出较高的微孔密度,在液氮温度下具有高储氢能力。虽然常压干燥是最简单的制备气凝胶的方式,但非常耗时。

  多糖基气凝胶的微观结构在很大程度上取决于前体材料、干燥工艺和交联剂等因素,可通过密度、孔隙率、比表面积等数据进行表征。

  一般来说,前体材料的初始浓度与气凝胶的密度成正比,与孔隙率成反比。此外,比表面积是表征气凝胶微观结构的关键参数。高孔隙率、高比表面积的气凝胶对生物活性成分的吸收和负载能力也更优异,通过控制气凝胶的微观结构可以提高其吸附率和总负载率。

  干燥工艺的不同会对孔径产生影响。通常情况下,超临界干燥制备的气凝胶孔径较小;对于冷冻干燥,高冷却速率会使微观结构更均匀、孔径更小,并减少因冰晶生长不均匀而导致的片状结构的出现。将凝胶置于定向热梯度条件下会导致冰晶模板化,进而会影响传热和水结晶取向,有利于晶体沿温度梯度方向平行生长,从而控制气凝胶的取向结构与形态。Parikka等发现冰晶模板导致气凝胶孔隙变窄,孔体积缩小,并出现扁平状的孔,呈现蜂窝结构。除了控制热梯度条件,冰晶的各向异性生长还受到电磁场的影响。

  交联作用会对气凝胶的微观结构产生变化,并提供更加均匀的孔径分布和更小的孔径尺寸。海藻酸盐和壳聚糖通过静电相互作用和非共价交联,形成具有紧密网络结构的凝胶,孔径随着气凝胶中壳聚糖比例的增加而减小。但向海藻酸盐溶液中加入过量钙离子交联后,海藻酸钠气凝胶的孔径甚至更低。由此可见,添加交联剂是改善气凝胶结构的有效手段。

  气凝胶的机械性能与气凝胶网络的微观结构和形态密切相关,含有较大孔径的气凝胶表现出较低的机械强度。此外,机械性能也受前体材料特性的影响,研究发现普鲁兰多糖气凝胶的抗压性能随着前体材料质量浓度的增大而提高。

  交联是保持气凝胶形态的重要影响因素。Chen Han等以魔芋葡甘聚糖为原料,通过静电纺丝和冷冻干燥技术制备了超轻、高孔隙率的纳米微纤丝气凝胶,纳米微纤丝分子间通过氢键交联,以无规和互穿的方式构成魔芋葡甘聚糖气凝胶的多孔网络结构,从而使气凝胶具有较好的抗压性能。

  在聚合物基质中添加增强材料可有效提高气凝胶的机械强度。表面具有大量羟基的纳米纤维素是一种长径比高、生物相容性好的纤维增强材料,可以与基质的强氢键相互作用构成互连的孔隙网络。Wang Yixiang等使用纳米纤维素作为增强材料,通过反复的冷冻和解冻循环制备了玉米淀粉/聚乙烯醇气凝胶,红外光谱分析结果表明纳米纤维素与基质间形成3D氢键网络,进而获得具有更高强度的新型多孔材料。因此,通过添加增强材料的方式可以使用于食品包装的气凝胶具有理想的性能。

  研究人员通过改进干燥技术以解决使用传统干燥方法制备的气凝胶机械性能较差的缺点。双向冷冻干燥是一种能够使气凝胶产生特殊的各向异性排列多孔结构的新方法。采用该方法制备的各向异性纤维素/石墨烯气凝胶在干燥状态下压缩60%应变时恢复率为99.8%,压缩至90%应变时恢复率为96.3%,表现出极高的压缩性和弹性。

  当干燥的气凝胶与水接触时,水分子很容易被极性分子吸收使结构膨胀并发生水合作用,随后水分子暴露于疏水分子,水分子和疏水基团之间的相互作用力和共价力可维持气凝胶的结构并为其提供弹性,此外,当吸水性和保水力平衡时,气凝胶吸水率将达到最大,如继续吸水,气凝胶的结构则会受到破坏,发生溶解。使用过程中的形态变化是限制多糖基气凝胶实际应用的一个因素,所以探究多糖基气凝胶的吸水能力及稳定性十分必要。干燥方式会对多糖基气凝胶在水中的稳定性产生影响。在相同条件下,相比于传统冷冻干燥,冰晶模板法制备的气凝胶在水中的稳定性更好。使用溶胶-凝胶及冷冻干燥法制备的魔芋葡甘聚糖基气凝胶表面光滑平整,没有皱缩、裂纹和塌陷,热稳定性良好,并且在潮湿环境中形态稳定,具有作为吸湿包装材料的应用潜力。

  纤维素是最常见的多糖,也是来源最丰富的多糖之一。纤维素作为一种可再生、可生物降解和可生物相容的前体材料,可用来制备具有高孔隙率和高比表面积的气凝胶。王晓娟等探究了微纤化程度对微纤化纤维素(MFC)气凝胶的性质和导热、保温、缓释等性能的影响,发现随着均质次数的增加,微纤化程度增大,气凝胶的结晶度增大,其中均质8次的MFC气凝胶具有更好的压缩性能和耐热性,可用于精油的负载和缓释,应用于保鲜包装。纤维素气凝胶质地柔软、可压缩,能避免振动应力对产品的机械损伤。使用银纳米粒子修饰的纤维素气凝胶除了具有抗菌和抗真菌能力外,还能防止草莓在运输过程中的反复振动对其造成损伤。

  纤维素衍生物因具有独特的理化特性,在保鲜包装领域有着广阔的应用前景。Yang Jingwen等以细菌纤维素(BC)为增强剂,柠檬酸(CA)为交联剂,负载纳米银(AgNPs)的羧甲基纤维素(CMC)为抗菌纳米材料,制备出结构完整、吸水性优异的/CA抗菌复合气凝胶,其显著延缓了鲜肉在7 d冷藏过程中的颜色变化和总活菌数的增长,有效延长了鲜肉的保质期,可作为生物活性吸附垫用于肉类包装。

  此外,使用化学或物理方法将纤维素的结构纳米化可制备纳米纤维素,纳米纤维素有CNF和CNC两类。使用稻壳和燕麦壳作为原料通过酶促水解和高压机械处理获得CNC,来自不同纤维素的CNC表现出不同的结构特性和结晶度,制备的气凝胶呈多孔、均匀的结构,25 ℃时吸水量为气凝胶原质量的264.2%~402.8%,可用作食品包装中的吸湿剂。

  通过添加交联剂可改善纳米纤维素及其衍生物的机械性能。CA可作为交联剂与氧化体系2,2,6,6-四甲基哌啶氧化物(TEMPO)氧化纤维素纳米纤维(TOCNF)酯化交联,也可作为增强剂提高机械性能和抗菌性能。以CA为交联剂,基于TOCNF/ε-聚-L-赖氨酸交联网络制备的气凝胶材料抗拉强度与未交联的TOCNF气凝胶相比提升1 倍,具有较高的抗菌效率(99.9%以上),可以在土壤中生物降。

BB娱乐平台登录艾弗森

BB娱乐平台登录艾弗森·[China]贝博艾弗森体育网页版 版权所有 邮箱登录 鲁ICP备13032066号
丙烯酰胺  聚丙烯酰胺  铸造用的化学品